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Περίληψη

Τα ετερογενή συστήματα προσφέρουν πολύ υψηλές αποδόσεις σε συνδιασμό με χαμηλό

κόστος και χαμηλή κατανάλωση ισχύος. Τα συστήματα αυτά περιέχουν υπολογιστικά

στοιχεία με διαφορετικές αρχιτεκτονικές όπως CPUs, GPUs, DSPs ή FPGAs.

Είναι σημαντικό να έχουμε πλήρη γνώση των διάφορων αρχιτεκτονικών αλλά και των

διαφορετικών προγραμματιστικών μοντέλων που χρησιμοποιούνται, για να μπορέσουμε

να αυξήσουμε την απόδοση σε ένα τέτοιο σύστημα.

΄Ενας τρόπος για την αύξηση της επίδοσης είναι η πρόβλεψη του χρόνου εκτέλεσης στα

διάφορα υπολογιστικά μέρη ενός ετερογενούς συστήματος χρησιμοποιώντας στατιστι-

κά στοιχεία, τα οποία συλλέγουμε χρησιμοποιώντας διάφορους hardware counters.

Στόχος αυτής της διπλωματικής εργασίας είναι η προσπάθεια αύξησης της επίδοσης

ενός ετερογενούς συστήματος, χρησιμοποιώντας τα δεδομένα που συλλέξαμε εκπαιδε-

ύοντας ένα στατιστικό μοντέλο το οποίο θα προβλέπει τον χρόνο εκτέλεσης. Απώτερος

στόχος είναι η πληροφορία αυτή να χρησιμοποιηθεί σε έναν χρονοπρογραμματιστή, ο

οποίος θα επανατοποθετεί την εκτελέσιμη εφαρμογή σε ένα καταλληλότερο υπολο-

γιστικό στοιχείο ενός ετερογενούς συστήματος, με στόχο τη μείωση του συνολικού

χρόνου εκτέλεσης και την αύξηση της επίδοσης.

Χρησιμοποιήσαμε διάφορα στατιστικά μοντέλα, όπως linear regression, neural net-

works και random forests με τα οποία προβλέψαμε τον χρόνο εκτέλεσης, με διαφο-

ρετικά ποσοστά επιτυχίας για κάθε μοντέλο σε Intel CPUs και NVIDIA GPUs.
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Abstract

Heterogeneous systems provide high computing performance, combining low cost

and low power consumption. These systems include various computational resources

with different architectures, such as CPUs, GPUs, DSPs or FPGAs. It is crucial

to have full knowledge of these architectures, but also of the programming models

used in order to increase the performance on a heterogeneous system.

One way to achieve this goal, is the prediction of the execution time on the different

computational resources, using statistical values which we collect with the use of

hardware counters. The purpose of this thesis is to increase the performance of a

heterogeneous system using the data we collected by training a statistical model

which will predict the execution time. Further goal is to use this prediction model

inside a run-time scheduler which will migrate the running application in order to

decrease the execution time and increase the overall performance.

We used various statistical models, such as linear regression, neural networks and

random forests and we predicted the execution time to Intel CPUs and NVIDIA

GPUs, with different levels of success.
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Chapter 1

Introduction

1.1 Problem Description

During the last years, the satisfying the demand for faster and smaller processors

has become an increasingly difficult challenge. For years this was not a problem as

hardware vendors delivered consistently increased clock rates and instruction-level

parallelism, so single threaded programs achieved very easily speedup without any

modification. Nowadays we have reached a point, where the improvement of the

performance on single core systems is extremely hard.

To overcome physical limitations and increase performance, multicore CPUs and

massively parallel hardware accelerators such as GPUs and FPGAs were favoured

by the hardware industry. For these architectures, software must be written in a

multi-threaded way in order to gain performance. As a result, the problem shifted

from the hardware designers to the software developers.

Each component in a heterogeneous system had its own programming model. NVIDIA

developed CUDA, a parallel computing platform and programming model in order

for the GPUs to be used for general purpose processing. On the other hand Intel,

has various programming models such as OpemMP and Threading Building Blocks

in order to program the multicoe CPUs. In order to solve this problem, Khronos

1



1.2. Purpose of this thesis 2

Group in collaboration with dozens of other hardware and software vendors, devel-

oped the OpenCL framework [1], so the software developers can write applications

that can be executed across heterogeneous platforms such as multicore CPUs, GPUs,

FPAGAs and DSPs, without the need to rewrite the application.

OpenCL promises functional portability, however does not promise performance

portability. Heterogeneous systems are volatile: They can easily change in a multi-

tude of configurations. The programmer can not know on which configuration the

program will be executed. We would like to have generic programs and map the

optimally on the underlying platform. This requires performance prediction.

Prediction can be made possible using statistical methods, such as linear regression,

least squares, random forests or even neural networks.

1.2 Purpose of this thesis

Predicting performance on heterogeneous systems is critical for facilitating the map-

ping of applications on the various computational resources of a heterogeneous sys-

tem. The prediction can be static at compile time or dynamic at run-time, based

on analytical models or statistical models. We would like to combine a statistical

model with the run-time in order to predict the execution time of an application

on a different platform. A way to do that is to use an off-line statistical training

of a prediction model, and then feed the model with results from the initial steps

of the execution of the target application at run time. Hopefully, using information

by the execution on one system component, the model should be able to predict

performance on other components. Thus, if possible, we could migrate the applica-

tion and increase the overall performance of the system. We created a model that

predicts performance using statistical methods, like linear regression, random forests

and neural networks. The model is based on the OpenCL and CUDA framework

and takes into account different hardware architectures such as Intel CPUs, AMD

GPUs and NVIDA GPUs, using PAPI for Intel CPUs [2] and nvprof [3] for the
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CUDA architecture.

1.3 Thesis Structure

Thesis is structured in three main parts.

The first part deals with background issues and the architectural differences of each

hardware platform we used to run the experiments. More specifically, in section 2.1

we start by analysing the Intel Xeon and OpenCL architecture and then CUDA

architecture and explain both the programming models and the hardware architec-

tures used in our experiments. In section 2.3 prediction techniques are discussed

and in section 2.4 related work is presented.

Second part describes the methodology used in order to collect data from the appli-

cations. Section 3.2.1 analyzes the usage of PAPI with the Intel OpenCL runtime

and how we collected data from the applications. Section 3.2.2 describes the method

used to collect data from the CUDA platform using NVIDIA profiler.

Next, section 3.3.2 presents the prediction models we created using different statis-

tical methods and section 4 presents our models evaluation.

Finally in section 5 we describe the conclusions that we came to and discuss possible

future work.



Chapter 2

Background Issues

In order to predict performance, we first need to gain a deep understanding on the

architectural characteristics of each platform, and how programs interact with hard-

ware. In this section we describe the architectural differences of each platform we

used for our experiments. First we analyse the Intel Xeon CPU hardware archi-

tecture, the NVIDIA architecture and finally we describe the OpenCL and CUDA

programming models.

2.1 Architectural differences

2.1.1 Intel CPUs

During the past few years, the need for increased performance, drove the hardware

vendors to find other solutions than just increasing clock rate and decreasing the

transistors’ size. So CPUs went from single core to multicore platforms. Software

developers were able to take advantage of the cores that the CPU offered them,

using the right programming models and tools, such as OpenCL. Nowadays a CPU

can have up to 61 [5] cores and with the use of Hyper-Threading Technology, the

CPU can increase significantly the supported number of threads.

4
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Figure 2.1: Xeon 5600/5500 Overview

The complexity of a modern CPU is hidden from the application developer in or-

der to allow the user to focus on the algorithms and more general issues, such as

the communication between different parts of the multithreaded application. This

is achieved through a small set of abstractions regarding memory hierarchy, and

synchronization primitives.

For example an Intel Xeon E5600 series processor has three levels of hardware caches,

6 cores and can support up to 12 threads. There are on-chip L1 and L2 private

memory caches near each core, which are shared by the "hyper"threads potentially

executing on each core. Also there is a 12Mb last level cache (L3 cache) shared

across all sockets.

In order for the programmers to take advantage of these architectures, different pro-

gramming models have been created, such as OpenMP, OpenACC, Thread Building

Blocks and OpenCL.

2.1.2 NVIDIA GPUs

Initially GPUs where used for creating graphic images and their architecture differed

a lot from a CPU. The CPU is composed of few cores with lots of cache memory
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Figure 2.2: Kepler GF100 block diagram

that can handle a few software threads at a time. In contrast, a GPU is composed of

hundreds of cores that can handle thousands of threads simultaneously. Nowadays

GPUs have moved closer and closer to being general purpose parallel computing

devices.

In figure 2.2 is shown the NVIDIA Kepler architecture. The main part of the GPU is

composed of computational components which are called streaming multiprocessors

(SMs). In each SM, computation is performed by execution units called streaming

processors (SPs). Streaming processors have access to a private set of registers

allocated from a register file and also there are per-SM L1 caches, a common L2

cache and the device memory which holds all the device data including texture and

constant data [6].
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2.2 Programming Models

2.2.1 OpenCL

OpenCL is a portable programming model for writing programs that execute across

heterogeneous platforms.

An OpenCL program consists of two parts; the host code, which runs on the CPU

and interfaces to the device and the kernel code which runs on the device. The

host code is responsible for device initialization, memory allocation on the device

and data transfer to/from device memory and running the control-intensive part

of the application. Proper usage can deliver significant performance improvements.

However the OpenCL standard only specifies the access levels of different types of

memory.

OpenCL defines a memory hierarchy of types as illustrated in figure 2.3. This

memory hierarchy is very similar to the memory hierarchy of the GPUs. In the case

of NVIDIA GPUs the device memory maps to the compute device memory, private

memory maps to the local registers available to each streaming processor, constant

memory is the same in both models and host and device memories are separate.

In the case of Intel CPUs there is no difference between device and host memory.

Local memory is allocated directly from the L3 cache and accesses to global memory,

constant memory, and private memory go through the L3 cache and LLC (last-level

cache) [8].

While OpenCL is a portable programming model, the performance portability is not

guaranteed. GPUs and CPUs have different hardware designs, and their differences

are such that they benefit from different application optimizations.
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Figure 2.3: OpenCL memory model

2.2.2 CUDA

CUDA is a parallel computing platform and programming model invented by NVIDIA.

CUDA gives program developers direct access to the virtual instruction set and

memory of the parallel computational elements in CUDA GPUs. Unlike CPUs,

GPUs have a parallel throughput architecture that emphasizes on executing many

concurrent threads slowly, rather than executing a single thread very quickly.

CUDA architecture is much like OpenCL as we see in figure 2.4. As a parallel pro-

gramming model, OpenCL is preceded by CUDA and as a result, OpenCL heavilly

borrowed a lot of CUDA characteristics.

The philosophy of the CUDA programming model is to partition the code in smaller

sub-problems that can be solved independently in parallel by blocks of threads. Then

each of these sub-problems must be partitioned into even smaller pieces that can be

solved simultaneously in parallel by the threads of a block. Therefore, the model

achieves good scalability as thread blocks are independent of each other.
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Figure 2.4: CUDA architecture model

For an in-depth treatment of the subject we refer the reader to [7].

2.3 Performance Prediction

Performance prediction has a very important role in many computer science fields;

compiler developers require a way to predict the performance of the generated code

on different architectures, software developers need a better understanding in order

to tune their code for a particular architecture and run-time schedulers need to be

able to predict performance in order to achieve a good application / architecture

mapping. The main goal of most techniques that have been used, is to estimate the

execution time of a program on a given architecture.
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2.3.1 Prediction Techniques

We can classify the prediction techniques into the following categories:

Analytical models, where we try to create a pure mathematical model which takes

into account the program input and the target architecture.

Profile based models, which are the most common technique and involve two

steps. The first step is the collection of metrics, such as hardware counters, while

the program executes, using various tools and/or profilers and the second step is

to feed an analysis tool with these metrics. An example of modern profilers for

collecting data are the NVIDIA profiler, Intel Vtune and PAPI. Models for statistical

data analysis can vary, from regression techniques to neural networks and random

forests.

2.3.2 Data Collection

Most modern microprocessors have hardware performance counters that are imple-

mented as a small set of registers that count events, occurrences of specific signals

related to the processor’s function. Such events, for example, may be the total

number of floating point operations, total L1 cache misses and number of success-

fully predicted branches. In order to measure the events we can either access them

directly or use a higher level tool like PAPI [2].

PAPI provides a simple API which supports a wide range of modern microprocessors

and accesses the hardware counters via two simple interfaces; the high level and

the low level interface. The high level interface is used for the acquisition of simple

measurements and the low level interface is fully programmable by the user. For our

measurements we used an Intel Xeon E5645 which supports the hardware counters

shown in table A.1.

Listing 2.1: Usage of PAPI’s high level interface

int events[2] = {PAPI_BR_MSP, PAPI_FP_OPS }, ret;
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long_long values[2];

if ((ret = PAPI_start_counters(events, 2)) != PAPI_OK) {

fprintf(stderr, "PAPI failed to start counters: %s\n",

PAPI_strerror(ret));

exit(1);

}

/* Computation */

...

if ((ret = PAPI_read_counters(values, 2)) != PAPI_OK) {

fprintf(stderr, "PAPI failed to read counters: %s\n",

PAPI_strerror(ret));

exit(1);

}

printf("Total flops: %lld\n",(float)values[1]);

printf("Conditional branch instructions mispredicted: %lld\n", values[0]);

PAPI also supports CUDA enabled GPUs, but we used a different approach. In

order to measure hardware events on the GPU we used tools that provide more

accuracy and are better supported.

NVIDIA profiler, nvprof, is a command line tool that provides a very simple mech-

anism to collect and view profiling data of an application. The GPU we used, GTX

480, supports a wide range of metrics that can be collected as seen in table A.2.

2.3.3 Statistical Models for Data Analysis

After collecting the values of the hardware counters of a large set of applications,

called training set, the next step is to feed them to a statistical model in order to find
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the correlation between the measured metrics and the execution time, a procedure

called training. After analysing the data, we create a mathematical function based

on the modeling approach, that describes our system. Then we can use this function

to predict the execution time of a new application -not in the training set-, by giving

as input the collected hardware counters.

The most widely used approach for modeling the relationship between a variable y

and one or more explanatory variables is linear regression. In linear regression, data

are modeled using linear predictor functions, and unknown model parameters are

estimated from the data.

Given a data set: {yi, xi1, ..., xip}i=1
n a linear regression model assumes that the

relationship between the dependent variable yi and the p-vector of regressors xi is

linear. Thus the model takes the form: yi = β1xi1, ..., βpxip+εi. The main drawback

of this method is that it only looks at linear relationships between dependent and

independent variables and it assumes there is a straight-line relationship between

them [9]. We can also use a non-linear model which contains an intercept, linear

terms, interactions, and squared terms.

Another approach is the use of artificial neural networks (ANN). Neural networks

are inspired by the central nervous system and are capable of machine learning and

recognizing patterns. An ANN consists of a number of interconnected nodes, typ-

ically organized in layers, and each one of them has a set of inputs and an output

that is forwarded to the next layer 3.2. A node is capable of performing a cer-

tain mathematical function, the activation function, which usually are the sigmoid,

S(t) = 1
(1+e−t)

, the tan-sigmoid, σ(t) = et−e−t

et+e−t , or the Heaviside step function [10].

Neural networks can be used for prediction with varying level of success. The main

advantage includes automatic learning of dependencies using only the measured data

without any need to add further information, like in the regression, such as type of

dependency. The neural network is trained with the hope that it will discover hidden

relations and that it will be able to use them for prediction. A neural network is

like a black box, as seen in 3.2, that is able to learn something. This is, at the same
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time its main disadvantage: the user does not have full knowledge of its internal

working [11].

Figure 2.5: Neural network overview

Finally another statistical model used for classification and regression is this of

random forests. Random forests are a combination of decision trees such that each

tree depends on the values of a random vector sampled independently and with the

same distribution for all trees in the forest. A decision tree, as seen in 2.6, is a

flowchart-like structure in which each internal node represents test on an attribute,

a branch represents the result of a test and a leaf node represents the decision taken.

A path from root to leaf represents classification rules [12].

Figure 2.6: Decision Tree Overview
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2.4 Related Work

Much work has been done for predicting performance and power on various systems,

using linear models and performance events.

Gilberto [19] used performance monitoring unit events in order to estimate power

consumption on Intel XScale Processors. Yuwen [20] presented a low-cost estimation

of sub-system power with the use of performance counters. Also power has been

estimated with the use of performance counters and used for thread scheduling

[23]. Furthermore, many methods were used for performance prediction on various

systems using hardware counters [21] and parametrized models [22] [24]. All these

approaches were used to predict execution time and power on the same architecture.

In our work, the models based on one architecture were used for predicting the

execution time for different architecture. We used hardware counters with a com-

bination of linear and non-linear models, neural networks and random forests, to

predict execution time.



Chapter 3

Methodology

This chapter describes the methods used for each platform in order to collect data

and also explains the creation of the statistical model. As training set we used

Rodinia, an open source benchmark which contains compute intensive applications

written in OpenCL and CUDA and we collected data from each kernel invocation

separately. In table A.3 there is the full list of all the applications we used to collect

data. The total number of different kernels from all the applications is 44.

3.1 Main Purpose

in this section we present the reasons that led to the completion of this work, as

well as the ways that have been followed to finally achieve it.

One way to increase performance on a heterogeneous system is the prediction of

the execution time on the different computational resources, using statistical values

which we collect with the use of hardware counters.After collecting the data, we

train a statistical model which will predict the execution time on a different device.

Having this information we can use it inside a software scheduler which will migrate

the running application at run-time in order to decrease the execution time and

increase the overall performance.

15
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3.2 Data Collection

3.2.1 Intel Xeon and PAPI

Firstly, the explanation of how the Intel’s OpenCL implementation works on Intel

Xeon and Intel Xeon Phi coprocessors is essential. These coprocessors include many

cores, each of them usually capable of supporting more than one hardware threads.

Our CPU, E5645, has 6 cores and each core supports 2 hardware threads, making

a total of 12. The exact number of hardware threads, can be queried with the

clGetDeviceInfo() interface.

At the initialization time of the OpenCL driver, a number of software threads is cre-

ated, equal to the maximum number of the hardware threads supported, and these

software threads are pinned to the HW threads. Then, following a clEnqueueN-

DRange() call, the driver schedules the work groups (WG) of the current NDRange

on the threads.

Thus, in order to collect data from an application, we have to collect the hardware

events from all the software threads the OpenCL run-time creates. Using PAPI’s

low level API we can attach PAPI to a number of different threads, given their

thread id, and collect all the hardware events at the same time. So, right after the

OpenCL driver initialization, we attach PAPI to all the created software threads.

The process can be seen in B.1.

Collecting data with PAPI’s low level API differs from the high level example seen

in 2.1. We now have to manually create user-defined groups called Event Sets, that

contains the hardware events we want to measure, initialize the PAPI library, start

and finally stop each event set using the low level API calls for each thread.

Listing 3.1: Attaching to the software threads

int *EventSet = NULL;

long long *results;

long long total_res = 0;
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papi_init();

proc_threads *proccess_threads = NULL;

cl_uint compute_units;

init_papi_cpu( device, &compute_units, &proccess_threads);

clFinish(command_queue);

start_cpu_counter ( counter, &EventSet, proccess_threads, compute_units);

error = clEnqueueNDRangeKernel( command_queue, kernel, 1, NULL,

global_work_size, local_work_size, 0, NULL, NULL);

clFinish(command_queue);

stop_cpu_counter ( EventSet, &results, compute_units);

int i;

printf("*Run #%d\n", _run);

for ( i = 0; i < compute_units; total_res += results[i], i++ )

printf("Thread #%d: %lld\n", i, results[i]);

printf("Sum: %lld\n\n", total_res);

The next step is to start measuring the hardware events right before the execution

of a kernel and stop after the kernel has finished executing. We want to be sure

that the measurement involves only the kernel execution, so the best way to do that

is by ensuring that all the other tasks inside the command queue are completed.

Thus, before each clEnqueueNDRange() invocation, we call clFinish(), that blocks

until all previously queued OpenCL commands in command queue are issued to the

associated device and have completed. Right after, we start the the specified PAPI

counters and wait until the kernel is executed, by calling again clFinish() and finally

we can collect our data. An example of this process can be seen in 3.1. Note that

we keep track of each thread separately.

Time profiling of the target application is done with the built in functions of OpenCL.

First, at the creation of the command queue we enable the kernel profiling by pass-
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ing the flag CL_QUEUE_PROFILING_ENABLE. Then, an event is passed as an

argument to the clEnqueueNDRangeKernel() and after the kernel finishes execution,

we can calculate the execution time with clGetEventProfilingInfo().

Each application is executed 100 times for each hardware counter and we take the

average of each counter. Also we eliminate abnormal values, such as wrong mea-

surements which some times occurred and possibly caused by frequency scaling or

the number of measured registers [18]. In figure 3.1 we present the values measured

from each execution of a single kernel.

Figure 3.1: Floating point instructions measured on Nearest Neighbour kernel

3.2.2 CUDA and nvprof

The ideal way for our measurements, was to use the same applications written

in OpenCL and execute them in the NVIDIA GPU. But as we figured out, there
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was no way to access the hardware counters on the GPU, because nvprof does

not support OpenCL kernels. Thus, the best alternative way was to execute the

same applications, this time written in CUDA. We can do this because the rodinia

OpenCL applications are ported from the original CUDA applications and the only

difference between them is the use of OpenCL functions, such as get_global_id()

which translates to blockIdx.x*blockDim.x+threadIdx.x in CUDA.

Although we could not collect hardware counters using OpenCL on CUDA, we could

measure the execution time using the built in function clGetEventProfilingInfo().

This way we kept the same kernels we used on Intel platform.

The data collection from a CUDA application is a lot simpler than the case of the

CPU. Using nvprof we can collect all metrics automatically just by passing as argu-

ments the target application and the metrics we want to collect. If a kernel is invoked

more than once, the total average is returned along with the highest and lowest val-

ues recorded. A simple example can be seen in 3.2. This time each application is

executed only 10 times, as nvprof’s results had very small to no variation.

Listing 3.2: Running nvprof and printing results

$ nvprof --metrics l2_l1_read_throughput,l2_l1_read_hit_rate ./nn

filelist.txt -r 5 -lat 30 -lng 90

==11933== Profiling result:

==11933== Metric result:

Invocations Metric Name Min Max Avg

Kernel: euclid(latLong*, float*, int, float, float)

1 l2_l1_read_hit_rate 70.26% 70.26% 70.26%

1 l2_l1_read_throughput 84.965GB/s 84.965GB/s 84.965GB/s

3.3 Forming the Model

After the collection of the raw data the next step is to use them to train a statistical

model. Because of the small training set and the high number of performance
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counters, mainly in the Intel CPU and the NVIDIA GPU, it is not efficient to

use all of them as input because this may cause overfitting [13]. Thus in order to

eliminate some performance counters from the model it, one method was to find the

correlation of each counter with the target value, execution time, and keep only the

counters with strong correlation. In the next sections we discuss the correlation of

each measured metric with the execution time and we also present the results of the

statistical models used.

3.3.1 Data Correlation

Correlation is a statistical measure that indicates the extent to which two or more

variables alter one another [15] and has a range between -1 and 1. A positive

correlation indicates the fact that these variables increase in parallel and also the

degree of influence between them. A negative correlation indicates the fact that

when one variable increases the other one decreases and vice versa and finally, a

zero correlation means that the two variables are unrelated. The main correlation

coefficient used was Spearman’s [14], ρ = 1− Σi(xi−x)(yi−y)√
Σi(xi−x)2Σi(yi−y)2

.

In tables 3.3.1 and 3.3.1 we present the correlations of each hardware counter with

the execution time measured on the target platform. Because the training set is

small and the total hardware counters are a lot more, it is needed to filter out the

variables with small correlation value in order to form the model. As we observed,

more than 10 hardware counters tend to overfit the model and thus, only the 10

hardware counters with the highest correlation are taken into account.

As expected the hardware counters with the biggest correlation in both cases, are

those which measure the total instructions completed, total cycles and total instruc-

tions issued. In the case of Intel’s Xeon architecture the variables that have high

impact on the execution time are also the total branch instructions, branch instruc-

tions taken and correctly predicted, total memory operations completed and also

the level 2 cache hits. In the case of CUDA architecture high impact have the level

2 cache read and write transactions, number of issued and executed control flow
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instructions and the number of issued and executed load and store instructions.

Counter Correlation

PAPI_BR_TKN 0.8874

PAPI_TOT_CYC 0.868

PAPI_BR_PRC 0.862

PAPI_TOT_INS 0.861

PAPI_LD_INS 0.8553

PAPI_BR_CN 0.8543

PAPI_LST_INS 0.8503

PAPI_BR_INS 0.8473

PAPI_L2_DCA 0.8432

PAPI_L2_TCH 0.8379

Table 3.1: Intel to CUDA OpenCL execution time corre-

lation values

Counter Correlation

ldst_executed 0.88

inst_issued 0.88

issue_slots 0.88

inst_executed 0.86

ldst_issued 0.86

cf_issued 0.85

cf_executed 0.85

l2_read_trans 0.83

l2_write_trans 0.72

dram_write_trans 0.70

Table 3.2: CUDA to Intel OpenCL execution correlation

values
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3.3.2 Model for predicting OpenCL CUDA execution time

from Intel OpenCL

The first step to form the model in order to predict the execution time on the CUDA

architecture using OpenCL, is to train it, using as input the hardware counters with

high correlation values from the Intel Xeon architecture. Several statistical methods

were used, which generated different results and are all presented below.

First method used, was linear regression using a simple linear model which contains

an intercept and linear terms for each predictor. We created different models based

on the number of hardware counters we used. One way to evaluate the model is

the root-mean-square error (RMSE), which indicates the standard deviation

of the differences between predicted values and observed values. In table 3.3.3 are

presented the different RMSEs from each model.

Number of Counters Used RMSE

9 5.12

8 7.29

7 7.17

6 8.86

5 229

Table 3.3: Linear regression for CUDA prediction; RMSE

values

As seen in table 3.3.3, RMSE for all the cases except the last is slightly above zero,

which means our model could sometimes generate wrong results. In the case of 5

hardware counters the RMSE is too high which does not indicate a good fit for the

model.

Next we used a non-linear quadratic model which contains an intercept, linear terms,
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Figure 3.2: Neural Network Training Performance

interactions, and squared terms. Again we created different models based on the

number of the hardware counters we used to train the model. In all cases except

when we used 5 counters, the RMSE of the generated models is exactly zero, and in

the case of 5 hardware counters 0.77, which indicates a good fit.

We also created models based on neural networks and random forests. As seen in

figure 3.2 the MSE is quite high in the case of neural networks no matter the number

of neurons used. Random forests prediction model out-of-bag error is shown in 3.5.

Again the error is too high no matter the number of trees in the forest. This happens

because methods like neural network fitting require a very large training set and the

training set we used was too small.
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Figure 3.3: Out-of-bag error with 20 trees

Figure 3.4: Out-of-bag error with 60 trees
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Figure 3.5: Out-of-bag error with 120 trees

3.3.3 Model for predicting Intel OpenCL execution time from

NVIDIA CUDA

The same approach was used to form the model for prediction Intel OpenCL execu-

tion time using CUDA. We again trained the models using the hardware counters

with the highest correlation values.

In the case of linear regression the RMSE error, as seen in ??, was higher compared

to the case of Intel OpenCL to CUDA prediction. The smallest error achieved when

we used 10 hardware counters to our model.
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Number of Counters Used RMSE

10 92.6

9 99.1

8 110

7 110

6 109

5 115

Table 3.4: Linear regression for CUDA prediction; RMSE

values

The non-linear quadratic model returned an RMSE of 3.52 for 10 and 9 hardware

counters, 16 for 8 hardware counters and above 100 for less hardware counters used.

Again the non-linear model indicates a better fit than the linear.

Again, in the case of neural networks, the MSE was too big as seen in 3.6, making

the model unable to predict the correct values. High out-of-bag error had again

random forests, no matter the number of trees used, as seen in 3.7.
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Figure 3.6: Neural Network Training Performance

Figure 3.7: Out-of-bag error using 60 trees



Chapter 4

Evaluation

In this chapter we present how well our models predicted the execution time in each

platform, compared with the actual measured times.

As target applications we used the Scalable HeterOgeneous Computing (SHOC)

Benchmark Suite [16]. Hardware configuration was the same, using an NVIDIA

GTX480 GPU and an Intel Xeon E5645 CPU.

There were 20 kernels available, that were used as our target in the case of Intel to

OpenCL prediction. In the case of CUDA to Intel OpenCL prediction we had only

10 kernels available, because not all were written in the same way between OpenCL

and CUDA making the prediction impossible.

4.1 Intel Xeon OpenCL to GTX480 CUDA predic-

tion results

In figure 4.1 we present the predicted times vs the measured times. We got our

best results using only the first 6 hardware counters with the highest correla-

tion values. Also because the execution times on each kernel was really small

(0.008 - 0.3 ms) and we observed a high divergence between the predicted and

28
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real times, we increased the number of iterations of each kernel in order to increase

the execution times. The formula for linear prediction with 6 hardware counters

is: Execution_time = −2.9 ∗ 10−8 ∗ Branch_instructions_taken − 1.24 ∗ 10−9 ∗

Total_cycles− 1.12 ∗ 10−6 ∗ Branch_instructions_correctly_predicted+ 7.865 ∗

10−9 ∗ Instructions_completed − 4.81 ∗ 10−9 ∗ Load_Instructions + 1.08 ∗ 10−6 ∗

Branch_instructions+ 2.0829

In figures 4.2 and 4.3 we present predictions of the linear models using more hardware

counters, 7 and 8 respectively, but as the reader can see, the prediction times were

not close to the real execution times.

Figure 4.1: Linear prediction results using 6 hardware counters - Intel to CUDA

The full list of each experiment number shown in the graph and the application

name can be seen in table A.4. 6 out of 20 kernels tested were correctly predicted

with a small deviation, between 1% and 9% and an average of 5%. 4 out of 20 kernels

had a average deviation of 20% and the rest 50%. 2 kernels out of 20, number 4

and 13 in figure 4.1, presented a huge deviation. This was caused by a high number

of resource stalls, above 50% of total cycles measured for kernel #4 and 17% for
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Figure 4.2: Linear prediction results using 7 hardware counters - Intel to CUDA

kernel #13, making the model to fail. When we tried to put the resource stalls as a

parameter to the model, the prediction failed in all cases.

Non linear regression, although having zero RMSE, the values predicted where much

higher than the real ones, with the difference being close to 1000ms. Same results

where generated using the neural network model, making the two models unusable.

Random forest prediction was closer to the real execution times, relatively to neural

networks and non-linear regression, but again the model was much worse than the

linear regression model we presented earlier. We got the best results, shown in

figure 4.5, using 60 trees, but the average deviation was above 100%.
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Figure 4.3: Linear prediction results using 8 hardware counters - Intel to CUDA

Figure 4.4: Random Forest Prediction with 60 trees - Intel to CUDA
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Figure 4.5: Neural Network Prediction - Intel to CUDA
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4.2 GTX480 CUDA to Intel Xeon OpenCL predic-

tion results

In the case of CUDA to Intel OpenCL prediction, we had a smaller target set,

containing only 10 kernels. Below we present the results for each statistical method

used.

Using linear regression 5 out of 10 kernels where predicted successfully with an

average deviation of 5.8% and the other 5 where not predicted successfully, as seen

in 4.6. The final formula for predicting the execution time using linear regression

is: Execution_time = −2.12 ∗ 10−5 ∗ lsd_executed+ 65.06 ∗ 10−5 ∗ inst_issued−

65.9 ∗ 10−5 ∗ issue_slots+ 1.07 ∗ 10−5 ∗ inst_executed+ 0.4 ∗ 10−5 ∗ ldst_issued+

7.96 ∗ 10−5 ∗ cf_issued− 7.89−5 ∗ cf_executed+0.37−5 ∗ l2_read_transactions−

35.8l−5 ∗ l2_write_transactions+ 43.4−5 ∗ dram_write_transactions+ 14.791

Figure 4.6: CUDA to Intel OpenCL linear prediction results

As in the case of Intel OpenCL to CUDA prediction, non-linear regression and neural
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networks 4.7, generated poor results. Again random forests prediction results were

much closer to the real times measured compared to neural networks, but the error

was high as seen in figure 4.8. The main reason for this difference was that we used

CUDA applications in order to predict the execution time on Intel architecture.

Even though the applications were the same, we do not have full knowledge of the

under-laying tools used to form and execute the binary to the target GPU device,

such as the compiler and the runtime. Thus, event the smallest difference would

affect the prediction result.

Figure 4.7: CUDA to Intel OpenCL prediction results using neural networks

Figure 4.8: CUDA to Intel OpenCL prediction results using random forests



Chapter 5

Conclusion and Future Work

Today programmers are not able to exploit all the available computational power on

a heterogeneous system. Due to the different architectures, they have to manually

optimize their programs depending the target device and run benchmarks to find

where the application will be executed better.

We addressed this problem by creating statistical models that predicts the execution

time on different hardware architectures and different programming models. This

way we can predict the execution time on a different device on a heterogeneous sys-

tem at run-time and using this information we can migrate the executing application

to a more suited device, increasing the overall performance.

This thesis is the first step towards performance prediction for heterogeneous sys-

tems. Our work has several limitations which we hope to address in the future.

First, our models are not always correct making them unstable. The main reason was

the small training set we used and we hope to increase it by using more applications.

Also we would like to include to our model ATI GPUs which support OpenCL and

provide a simple API, GPUPerfAPI [4], that can measure hardware events on ATI

GPUs.

Future work also includes testing our model with a run-time system such as GOpenCL

[25] in order to measure the overall performance gain on a heterogeneous system.

35
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Finally we want to include power prediction to our models using hardware events.

This way we can not only increase the performance of a heterogeneous system but

also decrease the power consumption.
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Appendix A

Tables

A.1 PAPI counters

Counter Name Description

PAPI_BR_CN Conditional branch instructions

PAPI_BR_INS Branch instructions

PAPI_BR_MSP Conditional branch instructions mispredicted

PAPI_BR_NTK Conditional branch instructions not taken

PAPI_BR_PRC Conditional branch instructions correctly pre-

dicted

PAPI_BR_TKN Conditional branch instructions taken

PAPI_BR_UCN Unconditional branch instructions

PAPI_FP_INS Floating point instructions

PAPI_FP_OPS Floating point operations

PAPI_L1_DCM Level 1 data cache misses

PAPI_L1_ICA Level 1 instruction cache accesses

PAPI_L1_ICH Level 1 instruction cache hits

PAPI_L1_ICM Level 1 instruction cache misses

PAPI_L1_ICR Level 1 instruction cache reads

PAPI_L1_LDM Level 1 load misses

40
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PAPI_L1_STM Level 1 store misses

PAPI_L1_TCM Level 1 cache misses

PAPI_L2_DCA Level 2 data cache accesses

PAPI_L2_DCH Level 2 data cache hits

PAPI_L2_DCM Level 2 data cache misses

PAPI_L2_DCR Level 2 data cache reads

PAPI_L2_DCW Level 2 data cache writes

PAPI_L2_ICA Level 2 instruction cache accesses

PAPI_L2_ICH Level 2 instruction cache hits

PAPI_L2_ICM Level 2 instruction cache misses

PAPI_L2_ICR Level 2 instruction cache reads

PAPI_L2_LDM Level 2 load misses

PAPI_L2_STM Level 2 store misses

PAPI_L2_TCA Level 2 total cache accesses

PAPI_L2_TCH Level 2 total cache hits

PAPI_L2_TCM Level 2 cache misses

PAPI_L2_TCR Level 2 total cache reads

PAPI_L2_TCW Level 2 total cache writes

PAPI_L3_DCA Level 3 data cache accesses

PAPI_L3_DCR Level 3 data cache reads

PAPI_L3_DCW Level 3 data cache writes

PAPI_L3_ICA Level 3 instruction cache accesses

PAPI_L3_ICR Level 3 instruction cache reads

PAPI_L3_LDM Level 3 load misses

PAPI_L3_TCA Level 3 total cache accesses

PAPI_L3_TCM Level 3 cache misses

PAPI_L3_TCR Level 3 total cache reads

PAPI_L3_TCW Level 3 total cache writes

PAPI_LD_INS Load instructions

PAPI_LST_INS Load/store instructions completed
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PAPI_RES_STL Cycles stalled on any resource

PAPI_SR_INS Store instructions

PAPI_TLB_DM Data translation lookaside buffer misses

PAPI_TLB_IM Instruction translation lookaside buffer misses

PAPI_TLB_TL Total translation lookaside buffer misses

PAPI_TOT_CYC Total cycles

PAPI_TOT_IIS Instructions issued

PAPI_TOT_INS Instructions completed

A.2 CUDA metrics

Counter Name Description

l1_cache_global_hit_rate Hit rate in L1 cache for global loads

branch_efficiency Ratio of non-divergent branches to to-

tal branches expressed as percentage

l1_cache_local_hit_rate Hit rate in L1 cache for local loads and

stores

sm_efficiency The percentage of time at least one

warp is active on a multiprocessor av-

eraged over all multiprocessors on the

GPU

achieved_occupancy Ratio of the average active warps per

active cycle to the maximum number

of warps supported on a multiproces-

sor

gld_requested_throughput Requested global memory load

throughput
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gst_requested_throughput Requested global memory store

throughput

executed_ipc Instructions executed per cycle

sm_efficiency_instance The percentage of time at least one

warp is active on a specific multipro-

cessor

inst_per_warp Average number of instructions exe-

cuted by each warp

gld_transactions Number of global memory load trans-

actions

gst_transactions Number of global memory store trans-

actions

local_load_transactions Number of local memory load trans-

actions

local_store_transactions Number of local memory store trans-

actions

shared_load_transactions Number of shared memory load trans-

actions

shared_store_transactions Number of shared memory store

transactions

gld_transactions_per_request Average number of global memory

load transactions performed for each

global memory load

gst_transactions_per_request Average number of global memory

store transactions performed for each

global memory load

local_load_transactions_per_request Average number of local memory load

transactions performed for each local

memory load
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local_store_transactions_per_request Average number of local memory store

transactions performed for each local

memory store

shared_load_transactions_per_request Average number of shared memory

load transactions performed for each

shared memory load

shared_store_transactions_per_request Average number of shared memory

store transactions performed for each

shared memory store

local_load_throughput Local memory load throughput

local_store_throughput Local memory store throughput

shared_load_throughput Shared memory load throughput

shared_store_throughput Shared memory store throughput

shared_efficiency Ratio of requested shared memory

throughput to required shared mem-

ory throughput expressed as percent-

age

flops_sp Single-precision floating point opera-

tions executed

flops_sp_add Single-precision floating point add op-

erations executed

flops_sp_mul Single-precision floating point multi-

ply operations executed

flops_sp_fma Single-precision floating point

multiply-accumulate operations

executed

flops_dp Double-precision floating point opera-

tions executed

flops_dp_add Double-precision floating point add

operations executed
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flops_dp_mul Double-precision floating point multi-

ply operations executed

flops_dp_fma Double-precision floating point

multiply-accumulate operations

executed

flops_sp_special Single-precision floating point special

operations executed

stall_inst_fetch Percentage of stalls occurring because

the next assembly instruction has not

yet been fetched

stall_exec_dependency Percentage of stalls occurring because

an input required by the instruction is

not yet available

stall_data_request Percentage of stalls occurring because

a memory operation cannot be per-

formed due to the required resources

not being available or fully utilized, or

because too many requests of a given

type are outstanding

stall_sync Percentage of stalls occurring because

the warp is blocked at a __sync-

threads() call

inst_executed The number of instructions executed

stall_texture Percentage of stalls occurring because

the texture sub-system is fully utilized

or has too many outstanding requests

stall_othe Percentage of stalls occurring due to

miscellaneous reasons

inst_replay_overhead Average number of replays for each in-

struction executed



A.2. CUDA metrics 46

shared_replay_overhead Average number of replays due to

shared memory conflicts for each in-

struction executed

global_cache_replay_overhead Average number of replays due to

global memory cache misses for each

instruction executed

tex_cache_hit_rate Texture cache hit rate

tex_cache_throughput Texture cache throughput

dram_read_throughput Device memory read transactions

dram_write_throughput Device memory write transactions

gst_throughput Global memory store throughput

gld_throughput Global memory load throughput

warp_execution_efficiency Ratio of the average active threads

per warp to the maximum number of

threads per warp supported on a mul-

tiprocessor expressed as percentage

gld_efficiency Ratio of requested global memory load

throughput to required global memory

load throughput expressed as percent-

age

gst_efficiency Ratio of requested global memory

store throughput to required global

memory store throughput expressed

as percentage

local_replay_overhead Average number of replays due to local

memory accesses for each instruction

executed

l2_l1_read_hit_rate Hit rate at L2 cache for all read re-

quests from L1 cache.
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l2_texture_read_hit_rate Hit rate at L2 cache for all read re-

quests from texture cache

l2_l1_read_throughput Memory read throughput seen at L2

cache for read requests from L1 cache

local_memory_overhead Ratio of local memory traffic to total

memory traffic between the L1 and L2

caches expressed as percentage

issued_ipc Instructions issued per cycle

issue_slot_utilization Percentage of issue slots that issued at

least one instruction, averaged across

all cycles

sysmem_read_transactions System memory read transactions

sysmem_write_transactions System memory write transactions

l2_read_transactions Memory read transactions seen at L2

cache for all read requests

l2_write_transactions Memory write transactions seen at L2

cache for all write requests

tex_cache_transactions Texture cache read transactions

dram_read_transactions Device memory read transactions

dram_write_transactions Device memory write transactions

l2_read_throughput Memory read throughput seen at L2

cache for all read requests

l2_write_throughput Memory write throughput seen at L2

cache for all write requests

sysmem_read_throughput System memory read throughput

sysmem_write_throughput System memory write throughput

cf_issued Number of issued control-flow instruc-

tions

cf_executed Number of executed control-flow in-

structions
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ldst_issued Number of issued load and store in-

structions

ldst_executed Number of executed load and store in-

structions

l1_shared_utilization The utilization level of the L1/shared

memory relative to peak utilization on

a scale of 0 to 10

l2_utilization The utilization level of the L2 cache

relative to the peak utilization on a

scale of 0 to 10

tex_utilization The utilization level of the texture

cache relative to the peak utilization

on a scale of 0 to 10

dram_utilization The utilization level of the device

memory relative to the peak utiliza-

tion on a scale of 0 to 10

sysmem_utilization The utilization level of the system

memory relative to the peak utiliza-

tion on a scale of 0 to 10

ldst_fu_utilization The utilization level of the multi-

processor function units that execute

global, local and shared memory in-

structions on a scale of 0 to 10

cf_fu_utilization The utilization level of the multi-

processor function units that execute

control-flow instructions on a scale of

0 to 10

tex_fu_utilization The utilization level of the multipro-

cessor function units that execute tex-

ture instructions on a scale of 0 to 10
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inst_issued The number of instructions issued

issue_slots The number of issue slots used

A.3 Rodinia benchmark application list

Application name Description

backprop Machine-learning algorithm that trains the weights

of connecting nodes on a layered neural network

bfs Breadth-first search

b+tree Traversal algorithm

cfd Unstructured grid finite volume solver for the

three-dimensional Euler equations for compress-

ible flow

gaussian Gaussian Elimination

heartwall Tracks the movement of a mouse heart over a se-

quence of 104 609x590 ultrasound images

hotspot Estimate processor temperature based on an archi-

tectural floorplan and simulated power measure-

ments

kmeans Clustering algorithm used extensively in data-

mining

lavaMD Calculates particle potential and relocation due to

mutual forces between particles within a large 3D

space

leukocyte Detects and tracks rolling leukocytes (white blood

cells) in in vivo video microscopy of blood vessels

lud LU Decomposition



A.4. SHOC Applications list 50

myocyte Models cardiac myocyte (heart muscle cell) and

simulates its behavior according to the work by

Saucerman and Bers

nn Finds the k-nearest neighbors from an unstruc-

tured data set

nw Nonlinear global optimization method for DNA se-

quence alignments

particlefilter Statistical estimator of the location of a target

object given noisy measurements of that target’s

location and an idea of the object’s path in a

Bayesian framework

pathfinder Dynamic programming to find a path on a 2-D grid

srad Diffusion method for ultrasonic and radar imaging

applications based on partial differential equations

streamcluster For a stream of input points, it finds a predeter-

mined number of medians so that each point is

assigned to its nearest center

A.4 SHOC Applications list

Application name Graph number

Breadth-first search 1

Triad 2-3

Molecular Dynamics 4

FFT 5-6

Sum Reduction 7

Parallel prefix sum 8-10
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Radix Sort 11-13

Sparse matrix-vector multiplication 14-16

Stencil Calculation 17-18

Single precision general matrix multiply 19-20



Appendix B

Source Code Listing

Listing B.1: Attaching to the software threads

int init_papi_cpu ( cl_device_id device , cl_uint *compute_units,

proc_threads **proccess_threads ) {

int ret, number_of_threads;

DIR *fd;

struct dirent *in_file;

proc_threads *next = NULL;

/* Get number of compute units for the CPU */

ret = clGetDeviceInfo( device, CL_DEVICE_MAX_COMPUTE_UNITS,

sizeof(cl_uint), compute_units, NULL);

if ( ret != CL_SUCCESS ) {

printf("Error %d in clGetDeviceInfo\n", ret);

return 0;

}

/* Get my pid and find all my threads so we *

* can attach PAPI to theses threads */

int pid = getpid();

char buffer[20];

snprintf(buffer, 10,"%d",pid);

52
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char *path = malloc(sizeof(char) * 30);

path = strcat ("/proc/" );

path = strcat ( path, buffer );

path = strcat( path, "/task/");

fd = opendir(path);

if ( fd == NULL ) {

perror("opendir");

exit(1);

}

#ifdef _DEBUG_

printf("Proccess path: %s\n", buffer);

#endif

*proccess_threads = ( struct _proc_threads *) malloc ( sizeof( struct

_proc_threads ) );

(*proccess_threads)->tid = pid;

next = (*proccess_threads);

number_of_threads = 0;

while ( (in_file = readdir(fd)) ) {

/* Do not count parents and self */

if (!strncmp (in_file->d_name, ".", sizeof(char)))

continue;

if (!strncmp (in_file->d_name, "..", sizeof(char) *2 ))

continue;

if (!strncmp (in_file->d_name, buffer, sizeof(in_file->d_name) ) )

continue;

#ifdef _DEBUG_

printf("New thread id added: %d\n", atoi(in_file->d_name));
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#endif

next->next = ( struct _proc_threads *) malloc ( sizeof( struct

_proc_threads ) );

next = next->next;

next->tid = atoi(in_file->d_name);

next->next = NULL;

number_of_threads++;

}

return number_of_threads;

}
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