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A B S T R A C T

Energy efficiency is the most important aspect in nowadays systems,
ranging from embedded devices to high performance computers. How-
ever, the end of Dennard scaling [2] limits expectations for energy ef-
ficiency improvements in future devices, despite manufacturing pro-
cessors in lower geometries and lowering supply voltage. Many re-
cent systems use a wide range of power managing techniques, such as
DFS and DVFS, in order to balance the demanding needs for higher
performance/throughput with the impact of aggressive power con-
sumption and negative thermal effects. However these techniques
have their limitations when it comes to CPU intensive workloads.

Heterogeneous systems appeared as a promising alternative to mul-
ticores and multiprocessors. They offer unprecedented performance
and energy efficiency for certain classes of workloads, however at sig-
nificantly increased development effort: programmers have to spend
significant effort reasoning on code mapping and optimization, syn-
chronization, and data transfers among different devices and address
spaces.

One contributing factor to the energy footprint of current software
is that all parts of the program are considered equally important for
the quality of the final result, thus all are executed at full accuracy.
Some application domains, such as big-data, video and image pro-
cessing etc., are amenable to approximations, meaning that some por-
tions of the application can be executed with less accuracy, without
having a big impact on the output result.

In this MSc thesis we designed and implemented a runtime sys-
tem, which serves as the back-end for the compilation and profiling
infrastructure of a task-based meta-programming model on top of
OpenCL. We give the opportunity to the programmer to provide ap-
proximate functions that require less energy and also give her the
freedom to express the relative importance of different computations
for the quality of the output, thus facilitating the dynamic exploration
of energy / quality trade-offs in a disciplined way. Also we simplify
the development of parallel algorithms on heterogeneous systems, re-
lieving the programmer from tasks such as work scheduling and data
manipulation across address spaces.

We evaluate our approach using a number of real-world applica-
tions, from domains such as finance, computer vision, iterative equa-
tion solvers and computer simulation. Our results indicate that sig-
nificant energy savings can be achieved by combining the execution
on heterogeneous systems with approximations, with graceful degra-
dation of output quality. Also, hiding the underlying memory hierar-
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chy from the programmer, performing data dependency analysis and
scheduling work transparently, results in faster development without
sacrificing the performance of the applications.

4



ΠΕΡ ΙΛΗΨΗ

Η ενεργειακή απόδοση είναι η πιο σημαντική πτυχή των σημερινών συστη-

μάτων, που αποτελούνται από φορητές συσκευές μέχρι και υπολογιστές

υψηλών επιδόσεων. Ωστόσο, το τέλος του Dennard scaling περιορίζει
τις προσδοκίες για βελτίωση της ενεργειακής απόδοσης σε μελλοντικές

συσκευές, παρά την κατασκευή επεξεργαστών σε χαμηλότερες γεωμετρίες

και μειώνοντας την τάση τροφοδοσίας. Πολλά πρόσφατα συστήματα χρη-

σιμοποιούν ένα ευρύ φάσμα της εξουσίας διαχείριση των τεχνικών, όπως

DFS και DVFS, προκειμένου να εξισορροπηθούν οι απαιτητικές ανάγκες
για υψηλότερη απόδοση με τις επιπτώσεις της επιθετικής κατανάλωσης ε-

νέργειας και με τις αρνητικές θερμικές επιδράσεις. Ωστόσο, οι τεχνικές

αυτές έχουν κάποιους περιορισμούς, όσον αφορά τα CPU intensive work-
loads.
Τα Ετερογενή Συστήματα εμφανίστηκαν ως μια πολλά υποσχόμενη ε-

ναλλακτική λύση έναντι των multicores και των πολυεπεξεργαστών.

Προσφέρουν πρωτοφανείς επιδόσεις όσον αφορά την ενεργειακή απόδοση

σε ορισμένες κατηγορίες φόρτου εργασίας, ωστόσο, με σημαντικά αυξη-

μένη προσπάθεια ανάπτυξης: οι προγραμματιστές πρέπει να καταβάλλουν

σημαντική συλλογιστική προσπάθεια, σχετικά με τη χαρτογράφηση και

βελτιστοποίηση κώδικα, το συγχρονισμό και μεταφορά δεδομένων μεταξύ

των διαφόρων συσκευών και χώρων διευθύνσεων.

΄Ενας σημαντικός παράγοντας που συμβάλλει στο ενεργειακό αποτύπω-

μα των τωρινών εφαρμογών είναι ότι όλα τα μέρη του προγράμματος θε-

ωρούνται εξίσου σημαντικά για την ποιότητα του τελικού αποτελέσματος,

έτσι όλα εκτελούνται με πλήρη ακρίβεια. Ορισμένοι τομείς εφαρμογών,

όπως big data, βίντεο και επεξεργασία εικόνας, είναι δεκτικά σε προ-
σεγγίστικούς υπολογισμούς, πράγμα που σημαίνει ότι κάποια τμήματα της

εφαρμογής μπορεί να εκτελεστούν με λιγότερη ακρίβεια, χωρίς να υπάρχει

μεγάλος αντίκτυπος στο τελικό αποτέλεσμα.

Σε αυτή την μεταπτυχιακή διπλωματική εργασία σχεδιάσαμε και υλο-

ποιήσαμε ένα σύστημα χρόνου εκτέλεσης το οποίο λειτουργεί ως back
end ενός μεταγλωττιστή και ενός προφιλερ, τα οποία συνθέτου ένα task-
based meta-programming model χρησιμοποιώντας OpenCL. Δίνουμε
την δυνατότητα στον προγραμματιστή να παρέχει προσέγγιστικές λειτουρ-

γίες που απαιτούν λιγότερη ενέργεια, αλλά και να δώσει στον προγραμμα-

τιστή την ελευθερία να εκφράσει τη σχετική σημασία των διαφόρων υπο-

λογισμών για την ποιότητα του τελικού αποτελέσματος, διευκολύνοντας

έτσι τη δυναμική αξιοποίηση της εξισορρόπησης ενέργειας / ποιότητας

με ένα πειθαρχημένο τρόπο. Επίσης έχουμε απλοποιήσει την ανάπτυξη

παράλληλων αλγορίθμων σε ετερογενή συστήματα, απαλλάσσοντας τον

προγραμματιστή από την επιβάρυνση εργασιών, όπως ο χρονοπρογραμμα-
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τισμός των εργασιών και ο χειρισμός των δεδομένων σε διαφορετικούς

χώρους διευθύνσεων.

Αξιολογούμε την προσέγγισή μας, χρησιμοποιώντας μια σειρά από πραγ-

ματικές εφαρμογές, που προέρχονται από τομείς όπως ο οικονομικός, η

όραση υπολογιστών, επαναληπτικές μαθηματικές μέθοδοι και προσομοι-

ώσεις σε υπολογιστή. Τα αποτελέσματά μας δείχνουν ότι σημαντική εξοι-

κονόμηση ενέργειας μπορεί να επιτευχθεί με το συνδυασμό της εκτέλεσης

σε ετερογενή συστήματα και προσεγγιστικών αλγορίθμων, με όχι ιδιαίτερα

εμφανή υποβάθμιση της ποιότητας του τελικού αποτελέσματος. Επίσης,

κρύβοντας την ιεραρχία μνήμης από τον προγραμματιστή, εκτελώντας α-

νάλυση δεδομένων μεταξύ των tasks και χρονοπρογραμματίζοντας τις

εργασίες με διαφάνεια, οδηγούμαστε σε ταχύτερη ανάπτυξη εφαρμογών

χωρίς να θυσιάζεται η απόδοσή τους.
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Every single one of us goes through life depending on
and bound by our individual knowledge and awareness.

And we call it reality. However, both knowledge and
awareness are equivocal. One’s reality might be another’s

illusion. We all live inside our own fantasies.

- Masashi Kishimoto
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1
I N T R O D U C T I O N

Moore’s law [1] and Dennard scaling [2], resulted in exponential per-
formance increases for the past three decades. However, present tech-
nologies can no longer sustain the previous advances in energy ef-
ficiency, leading the industry to move towards multicore processors
and heterogeneous systems.

Heterogeneous systems appeared as a promising alternative to mul-
ticores and multiprocessors, and currently they dominate the Top500

and Green500 HPC lists. This shift in architecture created a new
ecosystem both for applications and programmers, which offers great
performance and energy improvements, but at the same time, it in-
creased the development effort. Now programmers must spend a sig-
nificant amount of time for optimization, synchronization and trans-
fer data between different devices and address spaces. Still, however,
building an exascale computer with current technology would lead to
a machine that requires huge amounts of energy to function, making
it highly inefficient.

One promising technique for minimizing energy consumption, is
through approximate computing. Right now, all parts of the program
are considered equally important to the output result’s quality, thus
all are executed at full accuracy. Previous work [3, 4, 5], however,
has shown that there are several classes of applications which have
parts that do not affect the output quality significantly. These parts
can tolerate approximations, either by substituting a certain portion
of the code with a less accurate one or even replace it with a default
value.

This thesis focuses on a runtime system, which serves as the back-
end for the compilation and profiling infrastructure of a task-based
meta-programming model on top of OpenCL. The main contributions
of this MSc thesis are:

i) The design and implementation of an efficient, unified run-time
support for heterogeneous architectures. It offers services for
the computation execution, synchronization, memory manage-
ment and power/performance monitoring of all components of
the heterogeneous system.

ii) A memory manager which has two main goals: a) reduce the
overhead introduced by memory management (allocations / deal-
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introduction

locations) and b) ease data management and movement between
the different address spaces of the heterogeneous system. The
programmer does not have to create or free memory objects,
nor has to explicitly transfer data between the different address
spaces. Runtime creates each memory object, keeps track of it
and reuses it, without the user’s intervention and deallocates it
only when it is necessary, for example when the device memory
is full. Thus, we have a considerable effect on application perfor-
mance and also we significantly ease the life of the programmer,
as we remove a common burden when programming on hetero-
geneous systems, that of memory management.

iii) Concurrently exploit all available resources of a heterogeneous
system. Present runtime systems, typically assign computation-
ally heavy tasks to accelerators and the host remains idle whilst
waiting for the results. Therefore, high utilization can oftentimes
lead to bottlenecks on shared resources (memory hierarchy lev-
els, disk etc.), so the runtime system continuously monitors the
status of these resources and adapts computation scheduling and
mapping in order to alleviate pressure on over-utilized shared re-
sources.

iv) Automatic dependence analysis between different execution units
of the application. Programming a heterogeneous system, re-
quires the proper synchronization between execution units that
use the same memory objects, or else this could lead to data
corruption. This strain often leads the programmers to under-
utilize the heterogeneous system, as they usually synchronize
every part their application in order to be safe. With dependence
analysis, runtime executes concurrently every available part of
the application, as long as there are available resources, thus
maximizing the utilization of the system, and at the same time it
postpones the execution of parts that are not ready.

v) Real-time monitoring of power and energy consumption for each
accelerator of the heterogeneous system, in order to control the
execution of computation and its mapping to the underlying het-
erogeneous architecture and reduce the power and energy foot-
print of the application within user-specified constraints. Also
utilize the insight provided by compile-time analysis and pro-
filing information, in order to aggressively reduce power and
energy consumption and / or increase performance, even by ex-
ecuting computations at lower accuracy or totally skipping them
if necessary.

The rest of the thesis is organized as follows. Chapter 2 presents
required background about the Centaurus programming model and
some technical background about power and energy measurements.
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introduction

Chapter 3 presents the implementation of the runtime system and all
the underlying functionality that is implemented. In chapter 4, we
present the scheduling policies that are implemented. Chapter5, ex-
perimental evaluation is presented. Chapter 6 presents related work.
Finally in chapter 7 I conclude my thesis.
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2
B A C K G R O U N D

This chapter introduces the key features of the task-based program-
ming model that our runtime system supports and we explain each
#pragma directive in detail, so the reader can establish a solid under-
standing about the runtime design decisions. Also we analyze the
main functionality behind the Intel’s RAPL [9] and Nvidia’s NVML
[8] interfaces, which are used to measure energy and power consump-
tion at runtime.

2.1 centaurus programming model

Our programming model adopts a task-based paradigm using #pragma
directives to annotate parallelism and approximations. Tasks are im-
plemented as OpenCL kernels [6], containing both the accurate and
the approximate (if available) version of the code. One of the main
objectives of the programming model is to alleviate the programmer
from common burdens when programming a heterogeneous system,
such as inter-task synchronization, scheduling and data manipula-
tion. Also, the programmer can explore the quality / energy trade-
off at runtime, by expressing wisdom on the importance of different
parts of the code for the quality of the end-result.

Listing 2.1, summarizes the #pragma acl directives used for task
manipulation. The task body specifies the accurate implementation of
the task, defined as a function call, which corresponds to an OpenCL
kernel. The approximate implementation of the task is provided by
the programmer via the approxfun() clause. This is usually simpler
and less accurate than the accurate version, however it has a lower
energy footprint.

The significant() clause specifies the relative significance of the com-
putation implemented by the task for the quality of the output, with a
value (or an expression) in the range [0, 100]. If set to 100 or omitted,
the runtime will always execute the task accurately. If set to zero, the
runtime will always execute the task approximately, or even discard
it if an approximation is not available.

The programmer must also specify the input and output parame-
ters of each task, using the in(), out() and inout() clauses. This infor-
mation is exploited by the runtime system in order to perform data
flow analysis and data management as explained in Chapter3. Fur-
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2.1 centaurus programming model

thermore, the programmer can force data transfers, that overwrite
any existing data, from and to the device, using the device out() and
device in() clauses respectively. Note, that both the approximate and
accurate versions of the task, must have the same type and number
of arguments as input and output. Finally, we also support array
ranges, in the form of array[i:i+size] in the spirit of OpenACC [7], as
arguments to in() or out() clauses to further reduce unnecessary data
transfers.

Listing 2.1: #pragma acl task
#pragma acl taskgroup label( string_expr )

[energy_joule( uint ) | ratio( double )]

#pragma acl task [approxfun( function )]

[significant( expr )]

[in( varlist )] [out( varlist )] [inout( varlist ) ]

[device_in( varlist )] [device_out( varlist )]

[device_inout( varlist )]

[workers( int_expr_list )] [groups( int_expr_list )]

[bind( device_type )] [label( "name" )]

[bind_approximate(device_type)] [bind_accurate(device_type)]

accurate_task_impl(...) ;

#pragma acl taskwait [label( "name" )]

Because the tasks are implemented as OpenCL kernels, the pro-
grammer must specify the number of work-items work-groups geom-
etry for kernel execution. This is done via the workers() and groups()
clauses, which follow the semantics of local and global work size
of OpenCL, respectively. OpenCL kernels are able to run on every
device on the heterogeneous system but sometimes the implemen-
tation is optimized for a specific device or would not be executed
efficiently in certain devices. For those reasons, the programmer can
explicitly associate a task for execution on a specific device using the
bind() clause. A possible usage would look like this: bind(ACL GPU),
associating the task to a GPU. Also, if the user would like to pro-
vide an accurate or approximate version of a kernel, but wants this
kernel only to be executed on a specific device ( for example this
kernel is optimized for GPU and executing it to CPU would result
to an increased overhead), there are the special bind accurate() and
bind approximate() clauses. This way, if the task is to be executed
accurately, the runtime will not choose a device, rather respect the
programmer’s decision.

The programmer can associate a task with named task groups us-
ing the taskgroup directive and the label() clause. This action, asso-
ciates a task with named task groups which are characterized by a
unique string identifier. This way the programmer can classify tasks
and provide information, such as ratio or an energy budget, that the
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2.2 running power average limit and nvml

runtime system will use in order to make scheduling decisions. The
ratio() clause accepts as an argument a value (or expression) ranging
in [0.0, 1.0] which specifies the minimum percentage of tasks of the
specific group that the runtime should execute accurately. Finally, the
energy ratio() clause takes as an argument a positive, non-zero value
that sets the energy limit for this particular task group.

Lastly, the taskwait directive specifies an explicit synchronization
point, acting as an execution and memory barrier. By default, taskwait
waits on all issued tasks so far, unless the label() clause is present,
which limits the explicit barrier only to tasks of the specific task
group.

Listing B.1 depicts an example application, Molecular Dynamics
(MD), that fully utilizes our programming model.

2.2 running power average limit and nvml

Intel’s RAPL(Running Average Power Limit) interface provides plat-
form software with the ability to monitor, control, and get notifica-
tions on SOC power consumptions. In RAPL, platforms are divided
into domains for fine grained control, as seen in figure 1. These do-
mains include package, DRAM controller, CPU core (Power Plane 0),
graphics uncore (power plane 1), etc.

Figure 1.: RAPL power domains.

RAPL provides a set of counters providing energy and power con-
sumption information and even give the user the option to set a
power limit. RAPL is not an analog power meter, but rather uses
a software power model. We can access these hardware counters
through linux’s msr interface.

Finally, recent NVIDIA GPUs can report power usage via the NVIDIA
Management Library (NVML). Power reported is for the entire board
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2.2 running power average limit and nvml

including GPU and memory and the reading is accurate to within a
range of +/- 5 watts.
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3

I M P L E M E N TAT I O N

This chapter dives into the implementation of the runtime system.
First we analyze the general architecture and describe the lifetime
of a task. Then we inspect the most important components of our
runtime system: a) data management [3.2] , and b) data flow analysis
[3.3]. Scheduling policies are described in chapter 4.

3.1 general architecture

Figure 2 outlines the general architecture of our runtime system. It
is organized as a master/slave work-sharing scheduler. For each de-
vice on the system, two threads are created: (a) a memory transfers
thread, that is responsible for transparent data transfers between the
host and the device, and (b) a task issue thread, that is responsible
for issuing tasks, which are implemented as OpenCL kernels, for ex-
ecution to the corresponding device. Task has both the accurate and
approximate OpenCL kernels pre-compiled and stored in a fat-binary,
but we also support Just In Time (JIT) compilation if necessary. Our
runtime reuses the underlying vendor OpenCL implementation for
each device for data transfers, code execution, as well as to identify
system configuration.

The master thread executes the main program sequentially and ev-
ery task that is created, is first analyzed for possible dependencies
between previous tasks, as explained in detail in section 3.3, and then
gets stored either into the global ”ready” pool either in the ”not read”
pool. The scheduler thread selects the last task that was inserted into
the ready pool (LIFO), and then decides (section 4) on which device
the task will be executed.

All task scheduling and data manipulation are transparent to the
programmer, without having to manually transfer data to different
address spaces. Thus, maximizing the utilization of the system is
no longer an issue of the programmer, since our runtime can exploit
every resource available as long as there is enough task parallelism.
Also, it should be noted that the runtime tries to overlap data trans-
fers with computations when possible by prefetching data for tasks
to be executed while other tasks still keep the computational units of
the device busy.
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3.1 general architecture

Figure 2.: Runtime architecture overview.

Our runtime can also extract all the information regarding task’s
execution, such as execution time and energy consumption and also
data transfers time. This information can be digested by an offline
tool, i.e. profiler, which will then formulate some functions that pre-
dict execution time and energy consumption. These functions can be
fed back into the runtime in order to help it during different policies.

Figure 3.: Life of a task.

Figure 3, depicts the life of a task, from its creation to its execution
and finally its destruction. The first action is to determine if the task
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3.2 data management

has dependencies with a previous issued task, that is still execution.
If the task has no dependencies, we add it to the ready tasks pool
from where the scheduler can select it for execution. If the task has
one or more dependencies, we add it to the non ready tasks pool and
we wait until these dependencies a resolved.

3.2 data management

Due to the high number of different address spaces in a heteroge-
neous system, big emphasis was given to the creation of a data man-
agement unit, which is responsible for keeping track of every memory
object that is created throughout the application’s lifetime. Figure 4

depicts the design of the data management unit.

Figure 4.: Overview of data management unit.

When a device picks a task for execution, the first job of the mem-
ory transfers thread, is to transfer data to the corresponding device
in order to start execution on the OpenCL kernel by the execution
thread. Firstly, we check if a memory object of the current task, has
already been created and thus it is stored in the memory table. If the
answer is positive and the object resides on the current device, we
reuse the memory object without having to allocate memory on the
device or make redundant memory transfers.

In case where the memory object has been created but resides on
a different device, we have to create a new one and copy the data
from the either the remote device, or host. Note, that we cannot
always copy the data directly from host, as the previous task that was
executed may have altered them. For this reason, there are several
states for the memory objects as seen in figure 5, so we can ascertain
the action that we will take. The implementation is similar to a cache
coherence protocol.

At first, every entry of the memory object table, stars from the
INIT state. Then, when a new object is created and stored, the mem-
ory object goes to the TRANSFERRING state and stays there until
the memory transfer is completed. Note that because we treat CPU
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3.2 data management

Figure 5.: Different states of a memory object.

as an accelerator, sometimes there isn’t a TRANSFERRING state as
there are actually no transfers between the host (CPU) and the de-
vice (CPU). Following up the termination of data transfer to the tar-
get device, the memory object enters the EXCLUSIVE state, meaning
that it is used only by one device in the system. If an other device
wants a copy of the same data, the memory object enters at first in
the TRANSFERRING state and then becomes SHARED between the
multiple devices.

The moment when a task alters the contents of a memory object,
meaning that it used the out() clause in order to write the results
on top of a previous created memory object, every other copy gets
invalidated and it enters again the EXCLUSIVE state. Similarly, when
a memory object is in the INVALID state and requires data from a
different device it enters the SHARED state.

Runtime can also handle memory ranges in the form of array[i:size],
minimizing this way the need for extra memory transfers between the
host and the device. For each memory object, we keep track of the
available data that exist on the device and each time we transfer, if
necessary, only the sub-range of data that is needed in order to exe-
cute the task. Finally, it should be noted that runtime wraps every
malloc(), realloc(), calloc() and free() call of the main program, in
order to have full control of the host memory, keeping track of each

23



3.3 data flow analysis

object’s size and also freeing device memory when the host calls free()
on the corresponding host buffer.

3.3 data flow analysis

One of the most important features of our runtime system, is the
automatic data flow analysis at the granularity of tasks. Runtime
exploits the information provided by the programmer via the in/out
clauses and keeps track of the memory ranges read and written by
each task. This knowledge is used for a) detecting data dependencies
between tasks and b) automating memory transfers among different
address spaces of the heterogeneous system.

It not uncommon for an application to have data dependencies be-
tween its tasks, as the data are usually reused in the scope of the appli-
cation. For example, as shown in listing 3.1, task ”calculate vectors”
writes its output in memory object ”B1” and task ”calculate product”
needs these data as input, in order to be executed. This of course is a
simple scenario, but there are cases where the dependence graph can
be very complicated, as seen in figure 6, and it proves to be a huge
burden for the programmer to manage.

Listing 3.1: Example of dependencies between tasks.
#pragma acl task in(A1) out(B1)

calculate_vectors(A1, B1, size);

#pragma acl task in(B1) out(B2)

calculate_product(B1, B2, size);

For each new task that is created, runtime checks for potential
WaW, RaW or WaR data dependencies between tasks that have not
yet finished executing. Runtime keeps a dependency table, in order to
identify these dependencies and enforce execution of inter-dependent
tasks in the order they were spawned. Once the dependencies of the
task are resolved, it is then transferred to the ready queue (3, step 5)
and it can be selected for execution.

The dependency table is implemented as a hash table and an ex-
ample is shown in table 1. The hash table data structure was selected
mainly because of speed, as they generally have an average complex-
ity of O(1). The host address of each memory object is used as the
hash key and as value there are two pools; the in and out pool, where
tasks are stored. For any given task that is created, we search each
memory object in the dependency table and we store the task to the
corresponding pool. If a there are more than one tasks in the ”out”
pool, we know that there is a dependency, so the execution of the
task is postponed. The task will be executed only when all depen-
dencies are resolved, forcing this way the correct execution between
tasks. Finally, when a task finishes execution, it removes itself from

24



3.3 data flow analysis
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Figure 6.: SPStero Disparity’s application graph.

the dependency table. Note, in the case of memory ranges, the depen-
dency exists only if there is overlapping between the memory objects.
Else, there is no dependency between the tasks, increasing this way
the task parallelism.

key value
in out

&A1 calculate vectors NULL
&B1 calculate product calculate vectors
&B2 NULL calculate product

Table 1.: Dependency table for the example 3.1.
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4

S C H E D U L I N G P O L I C I E S

Every task includes the binaries of both accurate and approximate
versions of the OpenCL kernels. When issuing the task for execution,
the runtime decides whether it will execute the approximate or the
accurate version. Also, the runtime must decide the proper device
in order to execute the task. For example, enabling a new device for
executing a new task, may result in high energy consumption which
is not always desirable by the programmer. Thus, there is a number
of different policies, each of them trying to achieve goals set by the
programmer.

The programmer can either choose to minimize execution time,
meaning that the runtime will use all the available resources of the
system without caring about energy consumption, or he may want
the application to have the lowest possible energy footprint. Further-
more, the programmer may also set an energy threshold on a specific
task group, giving the runtime more freedom in order to choose the
appropriate execution mode.

Achieving the objectives set by the programmer, without having
prior knowledge of the application’s behaviour, is a very difficult task.
Fortunately, our runtime system can utilize information by prior pro-
filing analysis 4.2, in order to predict execution time or energy con-
sumption to some extent. Also, runtime keeps track of the average
power for each device, so it can properly calculate the energy con-
sumption of each task and data transfer. If profiling information are
not available, runtime tries to predict the execution time and energy
consumption based on the execution history of the tasks.

4.1 measuring energy and power consumption

For each platform, we create a thread that monitors energy and power
consumption using RAPL for Intel CPUs and NVML for Nvidia GPUs.
Each thread periodically polls these interfaces and along with a times-
tamp, these values are stored in order to be accessed later by the pro-
filer. At runtime, we keep the most recent power readings and when
a task finishes execution, it calculates the energy it consumed.

Although, measuring the energy consumption for each task pre-
supposes that we know the exact time each task started and finished
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4.2 profiling support

execution, something not trivial due to the asynchronous nature of
our runtime. OpenCL events are able to provide us with this infor-
mation, but only when kernels are executed on a single command
queue. When multiple kernels are issued for execution on the same
device, but in multiple command queues, OpenCL events do not pro-
vide the actual time the kernels started execution, rather provide the
time they were issued on the device. Thus, in order to determine the
actual kernel execution time for Nvidia GPUs, we use [4.1] the special
register clock in order to measure the number of cycles that elapsed
while the kernel was executing. For Intel CPUs we use the clock()
function, in a similar way.

Listing 4.1: Function for reading clock register on Nvidia GPUs.
long long int clock_time()

{

unsigned int clock_time = 0;

long long int extended;

asm("mov.u32 %0, %%clock;" : "=r"(clock_time) );

asm("cvt.s64.s32 %0, %1;" : "=l"(extended) :

"r"(clock_time));

return extended;

}

4.2 profiling support

Runtime can export detailed information about the execution of each
application, if the profiling mode is enabled. Table 2 shows in de-
tail the output that runtime exports, so an external application, i.e a
profiler, could gather data about the application.

The profiler can then collect this information and perform a sta-
tistical analysis generating a prediction model for each kernel and
taskgroup. This information can later be handed over to the runtime
system in order to help it take decisions about the scheduling of the
tasks and also choose the right execution mode (accurate/approxi-
mate). The output and input files are written and read as binaries
and the specific input format can be seen in table 3. There are two
prediction functions, one for predicting execution time and one for
energy consumption, for each device on the system. These functions
are mapped to a specific OpenCL kernel and to a specific taskgroup
of the application.

4.3 minimizing execution time / energy consumption

Given that data transfers typically incur significant overhead, data
locality is one of the main criteria, along with resource availability,
affecting scheduling of tasks to devices. Thus, when the scheduler
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4.3 minimizing execution time / energy consumption

Field Description
Name Task’s name and OpenCL’s kernel name

Execution mode Approximate/accurate
Start time OpenCL timestamp of when the task was

issued for execution
Stop time OpenCL timestamp of when the task fin-

ished execution
Execution time Task’s execution time in ms

Input/Output number Total number of input and output memory
objects

Start time OpenCL timestamp of start of memory
transfer to/from the device

Stop time OpenCL timestamp of end of memory trans-
fer to/from the device

Transfer time Memory object’s transfer time in ms
Size Memory object’s size in bytes

Table 2.: Profiling information generated by the runtime.

Field Description
Kernel Name Execution time prediction function

Energy consumption prediction function
Group Name Execution time prediction function

Energy consumption prediction function

Table 3.: Profiling information read by the runtime.

thread picks a new task for execution, the first action is to try to
estimate the amount of time each data transfer would take for each
device on the heterogeneous system. Then, with the help of the profil-
ing information, we can make a solid prediction about the execution
time both of the accurate and the approximate versions of the task.
Also, in order to predict execution time, we have to take into con-
sideration any other tasks that may be executing at that time on the
device.

In both platforms,GPUs and CPUs, the most contributing factor in
the execution time of two or more parallel tasks, is the geometry of
the OpenCL kernel and specifically the number of blocks each kernel
has. In figure (7), we can see that when a kernel spawns less blocks
than the number of Streaming Multiprocessors (SMs), in this case 13,
these kernels are run in parallel with small to no overhead, as long
as they reside in a different OpenCL command queue. The same
behaviour occurs in the case of one 8-core CPU, as seen in 8.

Thus, we can derive to equation (1a), that estimates the overlap
time between two tasks and equation (1b), that estimates the exe-
cution time of the a taski based on profiling information. Function
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4.3 minimizing execution time / energy consumption

Figure 7.: GPU execution time for multiple kernels and 13 SMs.

pred time(i) returns the estimated execution time of the task by the
profiler, blocks(i) returns the number of (OpenCL) blocks this task has
and SM is the number of Streaming Multiprocessors on a GPU or the
number of cores on a CPU, that are available at that given moment.

Figure 8.: CPU execution time for multiple kernels and 8 cores.

Overlap time(i) = pred time(i) ∗ (blocks(i) mod SM
blocks(i)

) (1a)

Execution time = pred time(i)−Overlap time(i− 1) (1b)
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4.3 minimizing execution time / energy consumption

After calculating the execution time for each device, we add the
total data transfers time. Then we derive to the total time that the
task will need in order to execute and transfer data on each device.
Now, based on the policy that the user has selected, we can select
the device that will execute the next task. If the user has selected to
minimize the execution time, the device that has the lowest total time
will be selected. In the case where the users has selected to minimize
energy consumption, we have to compute the number of Joules the
task will consume on each device, and select the one with the smallest
value.

4.3.1 Energy budget policy

Our programming model gives the programmer the opportunity to
set an energy budget for a specific task group. This way the execution
mode is not determined based on the available energy we have left
to spend. Listing 4.2 shows an example of a task group that has
an energy budget of 300J and contains 4 tasks, each with different
significance. The most important task of the algorithm 1, is to keep
the output quality as high as possible, given the target energy budget.
At first, the runtime tries to minimize the execution time of the group,
by distributing the tasks across the system’s devices as seen in line
12. If the energy target is not met, runtime moves each task, starting
with the less significant one, to the device with the smallest energy
consumption (line 22). If this step is not successful for meeting the
desired target, runtime starts to approximate tasks, again starting
from the least significant ones (line 25). Finally, if the energy budget
is set too low, runtime starts dropping tasks until the target is met
(line 27). The energy budget is valid until the next task wait. Then
the group’s energy budget is reset, except if the programmer sets a
new value.

Listing 4.2: Setting energy budget on a task group
#pragma acl taskgroup label("group1") energy_joule(300)

#pragma acl task label("group1") in(A1) out(B1) significant(75)

calculate_vectors(A1, B1, size);

#pragma acl task label("group1") in(A2) out(B2) significant(25)

calculate_product(A2, B2, size);

#pragma acl task label("group1") in(A3) out(B3) significant(50)

calculate_vectors(A3, B3, size);

#pragma acl task label("group1") in(A4) out(B4) significant(50)

calculate_product(A4, B4, size);

#pragma acl taskwait
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4.3 minimizing execution time / energy consumption

Algorithm 1 Energy budget algorithm
1: function check target(energy budget, current energy)
2: if energy budget ≥ current energy then
3: exit
4: end if
5: end function
6:

7: procedure Energy budget policy

8: NewGroup ← Sort all tasks in Group in ascending order of
significance

9: for each taski in Group do
10: for each devicei do
11: Energy(i,j) = estimate energy(i,j)
12: devicei = shortest time(i)
13: current energy = current energy + Energy(i,devicei)
14: end for
15: end for
16:

17: State = Change device
18: while check target(energy budget, current energy) do
19: for each taski in NewGroup do
20: switch State do
21: case Change device
22: devicei = min(Energy(i))
23: Next State = Approximate task

24: case Approximate tasks
25: approximate(taski)
26: Next State = Drop tasks

27: case Drop tasks
28: drop(taski)

29: update current energy()
30: check target(energy budget, current energy)
31: end for
32: State = Next State
33: end while
34: end procedure
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5

E X P E R I M E N TA L E VA L U AT I O N

In this chapter we evaluate the runtime system with real life applica-
tions, such as PBPI, SPStereo Disparity etc., and with special bench-
marks that are written in order to stress and check the functionality
of the runtime system. First, we check the overhead, both in time and
energy consumption, that our runtime introduces when executing an
OpenCL application. Then we evaluate the runtime policies that exist
in order to meet the user requirements.

The experimental evaluation was carried out on a system equipped
with two Intel XEON E5 2695 processors, clocked at 2.3 GHz, with 128

GB DRAM and two Nvidia Tesla K80 GPUs. The operating system
is Ubuntu 14.04, using the 3.16 Linux kernel. The GPU power moni-
toring interface returns the instantaneous power consumption polled
every 2 ms.

5.1 unit testing benchmarks

Before evaluating our runtime with real life applications, we devel-
oped a number micro benchmarks that test the runtime’s functional-
ity. Our first and most complex test, creates a number of tasks that
has the dependency graph shown in figure 9. Each task does a sim-
ple addition and forwards the result to the next, until the result is
returned to the host via ”task F”. In order to test the dependency
analysis, there is no taskwait between tasks, only after the last one.
We expect our runtime to discover all dependencies and force the
correct execution between tasks.

Also, tasks are executed across different devices, testing at the same
time the runtime’s memory manager. Memory manager must move
data across the different address spaces correctly, or else the results
will be inaccurate. For example, task B1 executes on GPU2 and task
B2 executes on GPU3. When task C will need the input data, in
order to be executed at the CPU, memory manager transfers data
from GPU2 and GPU3 to the CPU. Various other micro-benchmarks
were created that test WaW, RaW and WaR dependencies and also
test the correct data movement across different address spaces.
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5.2 runtime overhead

Figure 9.: Dependency graph of our unit test.

5.2 runtime overhead

In order to measure the overhead that our runtime system introduces,
compared to pure OpenCL implementations, we measured the execu-
tion time of some real life applications in their pure OpenCL form
and then the execution time on our runtime system. All applications
were executed in one device only, either CPU or GPU, without utiliz-
ing multiple devices. The same was done for the energy consumption.
The results are presented in Figure 10 and a short description of each
application can be fount in Appendix A. Table 5.2 presents the raw
numbers for more clarity.

As we can see, the overhead introduced by our runtime system is
negligible in most applications and some are even faster than the orig-
inal OpenCL implementation. This happens for two reasons: a) our
runtime system utilizes multiple command queues without the user’s
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5.2 runtime overhead

intervention, taking advantage of possible task parallelism even on
the same device, such as in the case of Molecular Dynamics (MD)
and b) our runtime system automatically exploits all opportunities
for minimization of data transfers and their overlap with computa-
tions. Note that SPStereo Disparity’s implementation uses both CPU
and GPU by default. The energy consumption overhead for each ap-
plication follows the same pattern as with the execution times.

Figure 10.: Performance overhead w.r.t. the corresponding OpenCL
implementation.

SPStereo MD PBPI CG HOG Bonds
Pure OpenCL (CPU)

4.98

309.2 53 85 15.13 2.05

Pure OpenCL (GPU) 146 85 146 3.95 1.91

Runtime (CPU)
5.12

294.51 53 84 15.13 2.04

Runtime (GPU) 84 89 46 3.8 1.79

Table 4.: Execution times between the pure OpenCl implementation
and the runtime system. Time is in seconds.
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5.3 scheduling policies

5.3 scheduling policies

In order to evaluate our scheduling policies, firstly for the device
distribution, we used applications with enough task parallelism and
with only one execution mode ( accurate ), so our runtime could ex-
press wisdom on the decisions regarding the selection of a device.
These applications were: MD B.1, PBPI and a matrix multiplication
application written as a benchmark to test the runtime system. MD
and PBPI have four tasks with no dependencies between them, and
matrix multiplication spawns 100 independent tasks that each calcu-
lates a 2048*2048 float matrix multiplication. Table 5.3 presents the
execution time and the energy consumption of each application for a
different number of device configurations, each distributing the tasks
across the corresponding number of devices. We can observe that
for all applications, times on CPU are much greater than the time on
GPU, and this has a negative effect on the total energy consumption.
We expect our policies to find the best configuration in each case from
all the possible ones.

Configuration Matrix mul MD PBPI
Time Energy Time Energy Time Energy

CPU 72 s 1823 J 156 s 27612 J 154 s 33132 J
1 GPU 18.01 s 2378 J 59.37 s 8011 J 50.6 s 5364 J
2 GPUs 10.95 s 2737 J 38 s 9880 J 42.2 s 8033 J
3 GPUs 7.99 s 3116 J 30 s 9960 J 36.9 s 9616 J
4 GPUs 6.3 s 3276 J 25.2 s 11188 J 28.5 s 9713 J

Table 5.: Execution time in seconds and energy consumption in Joules
for different device configurations.

Figures 11 and 12 show the distribution of tasks for each applica-
tion, when we executed the with the two policies. Each application
has been profiled and profiling data are given to the runtime for pre-
dicting execution time and energy consumption for each task and
task group. For MD and PBPI, runtime selects the optimal configura-
tion for both cases. For the benchmark, runtime selected to execute
some tasks to the CPU even if the execution will be much slower for
these individual tasks, but overall due to the high number of task par-
allelism, this delay is hidden and the overall application runs slightly
faster.

Runtime can also take decisions without profiling information, by
keeping history for each task and device. First, runtime sends tasks to
each device in order to measure execution time and energy, and then
with these data starts to form a model that tries to estimate execution
time and energy consumption. For applications like MD and PBPI,
where all tasks have similar execution times, runtime does a good job
distributing the tasks accordingly.
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5.3 scheduling policies

Figure 11.: Applications’ task distribution for minimizing execution
time policy.

Figure 12.: Applications’ task distribution for minimizing energy
policy.

Figures 13 and 14, show the task distribution in each device, with-
out profiling information. For the first policy, minimize execution
time, runtime performs idealy, as the tasks have similar execution
times. For the second policy, minimize energy consumption, runtime
is close to the ideal execution, executing the 74% and 60% of the
MD and PBPI tasks respectively, to one GPU. Power measurements
are not stable at the beginning of the applications execution, thus, a
significant amount of time is spend testing different configurations.
For the matrix multiplication benchmark, runtime does not have any
power measurements as the application spawns 100 tasks instantly.

Next, in order to evaluate the policies further, we tested all the
applications again, but this time the runtime was free to decide the
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5.3 scheduling policies

Figure 13.: Applications’ task distribution for minimizing execution
time policy, without profiling information.

Figure 14.: Applications’ task distribution for minimizing energy pol-
icy, without profiling information.

execution mode (accurate/approximate). Figures 15 and 16 show the
execution time and output quality for each application, for the first
policy. As the accurate execution time and energy, we used the results
we got from the same policy using the accurate version of the tasks.
We can observe that selecting the approximate kernel for each tasks,
results in a huge drop in execution time, without affecting the output
quality significantly.

For our second policy, we used again as reference the fully accurate
version of the tasks. The results are shown in figures 17 and 17.The
same behaviour is seen as with the first mainly because the appli-
cations does not have enough task paralelism. In the cases though,
were there are multiple tasks, we can observe energy gains of even
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5.3 scheduling policies

Figure 15.: Execution time difference for each application, using the
minimize execution time policy.

Figure 16.: Energy difference for each application, using the minimize
execution time policy.

52% (MD) between the accurate and the approximate execution. Only
for the applications MD and PBPI we can observe a difference in ex-
ecution time between and energy between the two policies. The in-
creased time for the minimize energy consumption policy, is due to
the fact that all tasks are executed on one device (one GPU), but we
can see that this results to a very low energy consumption.

Finally, we compare the execution time and energy consumption of
MD, MM and PBPI for each policy for the case that we have profiling
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5.3 scheduling policies

Figure 17.: Execution time difference for each application, using the
minimize energy consumption policy.

Figure 18.: Energy difference for each application, using the minimize
energy consumption policy.

data and for the case we don’t. Results can be seen in figures 19 and
20. We can observe that having offline profiling information is critical,
if we want to achieve optimal performance, or else there is a signifi-
cant overhead until the runtime learns the application’s behaviour.
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5.4 policy based on energy budget

Figure 19.: Execution time with and without offline profiling infor-
mation for each application, using the minimize energy
consumption policy.

Figure 20.: Energy consumption with and without offline profiling in-
formation for each application, using the minimize energy
consumption policy.

5.4 policy based on energy budget

For our energy budget policy, we compute the energy that each group
needs in order to be executed accurately, and then we measured the
execution time and the output quality of the whole application by us-
ing a different energy budgets for each task group. Firstly we want
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5.4 policy based on energy budget

to test how runtime responds to random changes in energy budget.
Thus, we execute an application (MD) and in each taskgroup we set
a randomly distributed value between 1 and 13. Figure 21 shows the
runtime actual execution energy for each taskgroup vs the target en-
ergy budget. We can observe that for energy budgets below 2 Joules
runtime cannot make a valid decision and drops all tasks, leading to
zero energy consumption.

Figure 21.: Runtime’s response to different energy budgets, with the
energy budget algorith.

As some may observe, runtime is always below limit and some-
times even 30% off. Thus for better results, the energy that we save
from each iteration, is passed down to the next. This way may surpass
the energy budget for a particular taskgroup but we don’t go past the
total energy budget for the entire application. Runtime adaption for
this algorithm is shown in figure 22.

Next, we tested our policy with a real life application and compare
the output quality for each energy budget. Figure 23 show the output
quality and execution time for the application MD, given that each
group needs 12.41 Joules in order to be executed accurately. Quality
below 96% is not accepted.

Subsequently, for each iteration, instead of keeping the energy bud-
get constant, we modify it. This way some task groups will be ex-
ecuted accurately, some approximately and some will be dropped.
We tried a different combination between accurate, approximate and
dropped tasks, and the results are shown in figure 24. We can observe
that MD is very tolerant in approximations, mainly because it simu-
lates a system in equilibrium state and the total energy is preserved,
even if some tasks are not executed.
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5.4 policy based on energy budget

Figure 22.: Runtime’s response to different energy budgets when sav-
ing the excess energy from previous iterations.

Figure 23.: Execution time, energy and quality of results for the appli-
cation Molecular Dynamics, for different energy budgets.

PBPI on the other hand, is only tolerant to approximate execution
of tasks. If we try to drop some kernels, the quality of result is
dropped to 0. Also, if every task in PBPI’s taskgroup is to be exe-
cuted accurately, we need 0.32 Joules, a value so small that the user
cannot set a valid energy budget.

Finally, the user can also set a ratio along with an energy budget.
By doing so, the algorithm tries to meet the energy budget but can
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5.4 policy based on energy budget

Figure 24.: Execution time, energy and quality of results for the appli-
cation Molecular Dynamics, using different combination
of energy budgets within an full application run.

only change the execution mode of the tasks that are below the the
target ratio. More formally, if the taskgroup has n tasks and ratio is R,
the R ∗ n least significant tasks are able to change it’s execution mode
(accurate, approximate, drop) in order to meet the energy budget. Of
course, this means that runtime cannot always be below budget, if
for example ratio is too high or energy budget is too low. Figures
25 and 26 show the runtime’s response (red line) to a cumulative
energy budget of 6737 Joules, for ratios 0.5 and 0.25 respectively. We
can see that our runtime cannot meet the energy budget set by the
programmer if she provides a relatively small amount of energy and
high ratio. On the other hand for a cumulative energy budget of 9560

Joules, we can observe in figures 27 and 28 that the energy budget
policy stays close to the real (blue) budgets set by the programmer.
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5.4 policy based on energy budget

Figure 25.: Runtime’s responce for ratio 0.5 and cumulative energy
budget of 6737 Joules.

Figure 26.: Runtime’s responce for ratio 0.25 and cumulative energy
budget of 6737 Joules.
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5.4 policy based on energy budget

Figure 27.: Runtime’s responce for ratio 0.5 and cumulative energy
budget of 9560 Joules.

Figure 28.: Runtime’s responce for ratio 0.25 and cumulative energy
budget of 9560 Joules.
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6
R E L AT E D W O R K

Green [3] is a framework for supporting energy-conscious program-
ming using controlled approximation while providing QoS guaran-
teed to the programmer. Ringenburg et al. [16] proposes an architec-
ture and tools for autotuning applications that enable trading quality
of results and energy efficiency, assuming approximations on hard-
ware level. EnerJ [15] proposes an approximate type system using
code annotations without defining a specific programming and exe-
cution model. ApproxIt framework [17] approximates iterative meth-
ods at the granularity of one solver iteration.

Variability-aware OpenMP [18] also follows a #pragma-based nota-
tion and correlates parallelism with approximate computing. Quick-
step [19] is a tool that parallelizes sequential code. It approximates
the semantics of the sequential code by altering data and control de-
pendencies. SAGE [20] is a domains pecific environment with a com-
piler and a runtime component that automatically generates approxi-
mate kernels in image processing and machine learning applications.
GreenGPU framework [21] dynamically splits and distributes work-
loads on a CPU-GPU heterogeneous system, aiming to keep busy
both sides all the time, thus minimizing idle energy consumption.
It also applies DFS for the GPU core and memory for maximizing
energy savings. Tsoi and Luk [22] estimate performance and power
efficiency tradeoffs to identify optimal workload distribution on a
heterogeneous system.

Our work introduces the concept of computation significance as a
means to express programmer wisdom and facilitate the controlled,
graceful quality degradation of results in the interest of energy efi-
ciency. We support approximate computing in a unified, straight-
forward way on different devices of accelerator-based systems, thus
exploiting and combining energy eficiency benefits from both hetero-
geneity and approximation. Our approach does not require hardware
support apart from what is already available on commodity proces-
sors and accelerators.
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C O N C L U S I O N

In this MSc thesis we introduce a runtime system for supporting ap-
proximate computing on heterogeneous systems. We allow the user
to express her wisdom on the importance of different computations
for the quality of the end result, to provide approximate, more energy
efficient implementations of computations and to control the quality
/ energy efficiency trade-off at execution time, using a single, sim-
ple knob. In addition the programmer can simply express her desire
for minimizing the energy consumption of the entire application or
minimize the execution time, leaving the rest to the runtime.

Also, our runtime eliminates the some technical concerns when
programming a heterogeneous system, such as computation schedul-
ing and data management, which are often a huge programming bur-
den that limit productivity. We evaluated our implementation, not
only with benchmarks that were designed to stress specific parts of
the runtime system but also with real life applications and found
that exploiting the concept of significance at the application level en-
ables measurable energy gains through approximations, while the
programmer maintains control of the quality of the output.

A key direction for future work, is to expand our runtime system,
in order to support FPGAs and embedded systems, increasing this
way the available platforms and also surge the possible options for
approximations and minimizing energy.
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A P P L I C AT I O N S D E S C R I P T I O N

a.1 pbpi

PBPI [11] is a high performance implementation of Bayesian phyloge-
netic inference method for DNA sequence data. It starts from random
phylogenetic trees and estimates the likelihood of them being realistic.
The trees are then modified and re-evaluated in an iterative evolution-
ary process. The tree with the maximum likelihood is the output of
the application. The process is quite sensitive to errors and applying
approximations is not a straightforward task.

a.2 hog

HOG [10] is a computer vision application for pedestrian recognition
using machine learning techniques. The algorithm divides the picture
into independent blocks that can be computed in parallel. For each
block a set of kernels is applied in pipeline manner. Initially, the
first kernel creates a histogram of the gradients orientation. Then it
combines them into a descriptor and finally feeds it on a Support
Vector Machine (SVM) which classifies each block.

a.3 cg

The conjugate gradient (CG) is an iterative algorithm that is applied
to systems of linear equations in order to acquire the numerical solu-
tion. The matrix of these systems is symmetric and positive-definite.
The algorithm stops when reaches convergence within a tolerance
value. We approximate some double floating point computations us-
ing the mixed precision technique, while keeping the last iterations
accurate in order to reduce the relative error of the final solution.

a.4 spstereo disparity

SPStereo Disparity [12] is an application which calculates a dense
depth estimate image from an input of a stereo pair camera. It con-
sists of two parts. First it produces an initial disparity image. After-
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wards, using the disparity image it exploits shape regularization in
the form of boundary length while preserving connectedness of im-
age segments to produce the depth estimate image. The most time-
consuming part of the algorithm is the computation of the initial dis-
parity image.

a.5 md

Molecular Dynamics (MD) context is in general a computer simula-
tion of atoms or molecules which derives from N-Body simulation. In
this particular application we simulate the behaviour of liquid Argon
molecules restricted in a bounded box. Specifically we simulate kine-
matic properties such as position, velocity etc of liquid Argon atoms
when they act in a kind of force produced by a Lennard-Jones pair
potential [14]. MD simulations find appliance in many science do-
mains such as theoretical physics, biochemistry and biophysics. For
example they are used to examine atomic-level effects of dynamics,
that cannot be observed with naked eye or any other macroscopic
technique, such as ion-subplantation.

a.6 bonds

Bonds [13] is library containing applications of bond-related compu-
tations. Bond is a loan that exists between an issuer and a holder. The
issuer is obligated to pay the holder the initial loan augmented by an
interest.
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M O L E C U L A R D Y N A M I C S

Listing B.1: Molecular Dynamics written in Centaurus programming
model

for(int i = 0; i < particlesnumber; i++) {

float x = ((float)_rand())/((float)(32767))*max_pos -

min_pos;

float z = ((float)_rand())/((float)(32767))*max_pos -

min_pos;

float y = ((float)_rand())/((float)(32767))*max_pos -

min_pos;

pos[i] = f4(x, y, z, 1.f);

x = ((float)_rand())/((float)(32767))*2.0f - 1.0f;

z = ((float)_rand())/((float)(32767))*2.0f - 1.0f;

y = ((float)_rand())/((float)(32767))*2.0f - 1.0f;

vel[i] = f4(x, y, z, 0.f);

force[i] = f4(0.f, 0.f, 0.f, 0.f);

color[i] = f4(1.0f, 0.0f, 0.0f, 1.0f);

}

max_steps = (int)duration/dt;

for (int run=0; run<=max_steps; run++) {

mod2 = run%2;

pos_in = ( mod2 == 0)? pos: pos_buf;

pos_out = ( mod2 == 0)? pos_buf: pos;

force_in = ( mod2 == 0)? force: force_buf;

force_out = ( mod2 == 0)? force_buf: force;

vel_in = ( mod2 == 0)? vel: vel_buf;

vel_out = ( mod2 == 0)? vel_buf: vel;

potential_in = ( mod2 == 0)? potential: potential_buf;

potential_out = ( mod2 == 0)? potential_buf: potential;

virial_in = ( mod2 == 0)? virial: virial_buf;
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virial_out = ( mod2 == 0)? virial_buf: virial;

#pragma acl task label("0") approxfun(update_Approx)

device_in(pos_in, force_in, vel_in, potential_in,

color, virial_in)

device_out(pos_out[0:particlesperdevice],

vel_out[0:particlesperdevice],

potential_out[0:particlesperdevice],

force_out[0:particlesperdevice],

virial_out[0:particlesperdevice]) significant(100)

workers(localwork[0],localwork[1])

groups(globalwork[0],globalwork[1])

update(pos_in, color, force_in, vel_in, potential_in,

bound, dt, particlesnumber, virial_in, offsets[0],

pos_out, vel_out, force_out, potential_out,

virial_out);

#pragma acl task label("1") approxfun(update_Approx)

device_in(pos_in, force_in, vel_in, potential_in,

color, virial_in)

device_out(pos_out[offset[1]:particlesperdevice],

vel_out[offset[1]:particlesperdevice],

potential_out[offset[1]:particlesperdevice],

force_out[offset[1]:particlesperdevice],

virial_out[offset[1]:particlesperdevice])

significant(100) workers(localwork[0],localwork[1])

groups(globalwork[0],globalwork[1])

update(pos_in, color, force_in, vel_in, potential_in,

bound, dt, particlesnumber, virial_in, offsets[1],

pos_out, vel_out, force_out, potential_out,

virial_out);

#pragma acl task label("2") approxfun(update_Approx)

device_in(pos_in, force_in, vel_in, potential_in,

color, virial_in)

device_out(pos_out[offset[2]:particlesperdevice],

vel_out[offset[2]:particlesperdevice],

potential_out[offset[2]:particlesperdevice],

force_out[offset[2]:particlesperdevice],

virial_out[offset[2]:particlesperdevice])

significant(100) workers(localwork[0],localwork[1])

groups(globalwork[0],globalwork[1])

update(pos_in, color, force_in, vel_in, potential_in,

bound, dt, particlesnumber, virial_in, offsets[2],

pos_out, vel_out, force_out, potential_out,

virial_out);

#pragma acl task label("3") approxfun(update_Approx)

device_in(pos_in, force_in, vel_in, potential_in,

color, virial_in)

device_out(pos_out[offset[3]:particlesperdevice],

vel_out[offset[3]:particlesperdevice],
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potential_out[offset[3]:particlesperdevice],

force_out[offset[3]:particlesperdevice],

virial_out[offset[3]:particlesperdevice])

significant(100) workers(localwork[0],localwork[1])

groups(globalwork[0],globalwork[1])

update(pos_in, color, force_in, vel_in, potential_in,

bound, dt, particlesnumber, virial_in, offsets[3],

pos_out, vel_out, force_out, potential_out,

virial_out);

#pragma acl taskwait

}
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